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We study the efficiency of the gradient mechanism of message transfer in a two-dimensional communication
network of regular nodes and randomly distributed hubs. Each hub on the network is assigned some randomly
chosen capacity and hubs with lower capacities are connected to the hubs with maximum capacity. The average
travel times of single messages traveling on the lattice decrease rapidly as the number of hubs increase. The
functional dependence of the average travel times on the hub density shows q-exponential behavior with a
power-law tail. We also study the relaxation behavior of the network when a large number of messages are
created simultaneously at random locations and travel on the network toward their designated destinations. For
this situation, in the absence of the gradient mechanism, the network can show congestion effects due to the
formation of transport traps. We show that if hubs of high betweenness centrality are connected by the gradient
mechanism, efficient decongestion can be achieved. The gradient mechanism is less prone to the formation of
traps than other decongestion schemes. We also study the spatial configurations of transport traps and propose
minimal strategies for their elimination.
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I. INTRODUCTION

Transport processes on networks have been a topic of in-
tensive research in recent years. Examples of transport pro-
cesses on networks include the traffic of information packets
�1–4�, transport processes on biological networks �5,6�, and
road traffic. The structure and topology of the network, as
well as the mechanism of transport, have been seen to play
crucial roles in the optimization of the efficiency of the trans-
port process �7�. It is therefore important to study this inter-
play in the context of realistic networks so that their perfor-
mance can be optimized.

Gradient networks, i.e., networks where transport effi-
ciencies are driven by local gradients of a scalar, have been
the focus of recent studies �8–10�. Examples of this include
electric current and heat flow which are driven by local gra-
dients of potential and temperature and biological transport
processes such as cell migration �11�: chemotaxis, hapto-
taxis, and galvanotaxis �8�. Gradient networks are also seen
in computer and communication networks. In the context of
packet transfer, a given computer or router �12� usually asks
its neighbors on the network for their current packet load and
balances its load with the neighbor that has the minimum
number of packets to route. In this case, the scalar is the
negative of the number of packets that are routed and a di-
rected flow is induced along the gradient of the scalar. The
gradient strategy is considered to be particularly efficient in
the case of simultaneous transfer of multiple messages, when
congestion effects can occur on the lattice. However, the ef-
ficiency of transport of the gradient strategy depends cru-
cially on the topology of the underlying substrate network. A
gradient based on a random graph topology tends to get eas-
ily congested, in the large network limit, whereas if the sub-
strate network is scale-free �13�, then the corresponding gra-

dient network is the least prone to congestion �8�. A
congestion driven gradient, as in the router case, has also
been studied �10�.

In this paper, we study the efficiency of the message
transport by the gradient mechanism on a two-dimensional
substrate communication network of nodes and hubs. Models
based on two-dimensional lattices have been studied earlier
in the context of navigation and search algorithms �14� and
communication networks of hosts and routers �15–17�. We
study the efficiency of a gradient based on this network both
for single message transfer as well as for the simultaneous
transfer of multiple messages �18,19�. We also compare the
efficiency of the gradient mechanism with other strategies
like random assortative connections between hubs which
have been considered for this network.

The connectivity of the network is determined by the na-
ture of the two types of nodes: The regular or ordinary nodes
which are connected to each of their nearest neighbors and
the hubs which are connected to all the nodes in a given area
of influence and are randomly distributed in the lattice. Thus
the network incorporates local clustering and geographical
separations �20,21�. The hubs in the lattice form a random
geometry, similar to that of random geometric graphs �22�,
whereas the ordinary nodes have a regular geometry.

In the absence of the hubs each node has the same degree
of connectivity and the degree distribution is a � function
with a single peak at four, the number of nearest neighbors;
however, due to the presence of hubs the degree distribution
is bimodal �23�. Thus the degree distribution of this network
does not belong to the usual classes, namely, the small world
�24� or scale free classes of networks, or to that of random
graphs �13�.

The gradient mechanism of message transfer is imple-
mented on this substrate lattice by distributing the hubs ran-
domly on the lattice and choosing the message handling ca-
pacities of the hubs out of a random distribution.
Connections between hubs are made by the gradient mecha-
nism where the gradient is along the steepest ascent for the
capacities associated with the hubs. The connections between
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hubs provide short pathways on the lattice, thereby speeding
message transfer. In the absence of the gradient connections,
the average travel time for messages traveling between the
source and target on the base network plotted as a function of
hub density showed stretched exponential behavior �23�. If
the gradient mechanism is implemented on the lattice, the
average travel time for single messages, traveling between
source and target pairs separated by a fixed distance, shows
q-exponential behavior as a function of hub density. Similar
q-exponential behavior is observed if the hubs are connected
by random assortative connections, i.e., each hub is con-
nected to two or three randomly chosen other hubs. The tails
of the q-exponential distribution in both cases show power-
law behavior. This is consistent with the power-law behavior
observed earlier at high hub densities for the random assor-
tative connections �23�. Thus average travel times reduce
very rapidly with hub densities in this regime. The origin of
the q exponential may lie in the fact that our travel times are
highly correlated due to many paths traveling through com-
mon hubs.

The distribution of travel times of single messages for the
gradient connections shows log-normal behavior similar to
that seen in the distribution of latency times of the internet
�16� and in directed traffic networks �25�. The leading behav-
ior of the travel time distribution is also log-normal when the
hubs are connected by random assortative connections, but
develops an additive power-law correction. In contrast, it is
interesting to note that travel-time distributions for stationary
traffic flow for the Webgraph shows power-law behavior,
whereas the Statnet shows q-exponential behavior �26�. It
was observed that the cumulative probability distribution of
sparseness time intervals in the internet shows q-exponential
behavior �27�.

In real networks such as telephone, traffic, and computer
networks, as well as the Internet, congestion effects occur
under multiple message transfer due to limitations of capac-
ity, bandwidth, and network topology �28–32�. Strategies to
decongest networks �33–37� are hence of practical impor-
tance. Since the gradient scheme has proved to be quite ef-
ficient at relieving congestion in scale free networks �10�, we
test the efficacy of the gradient scheme for decongestion of
our two-dimensional substrate network. Here, a gradient is
set up between hubs of high coefficients of betweenness cen-
trality �CBC� �34� and its success is compared with other
assortative schemes.

The existence of transport traps has been observed to play
a crucial role in congesting transport on scale-free networks
�10,38�. Since our network incorporates geographical infor-
mation, we study the spatial configuration of traps, the rea-
sons for their formation, and their contribution to the conges-
tion process. We also propose minimal strategies for the
decongestion of traps.

The two-dimensional �2D� substrate model and the gradi-
ent mechanism for message transfer is discussed in Sec. II.
We also discuss travel time distributions and their finite size
scaling for single message travels in this section. In Sec. III
we study multiple message transfer and the congestion prob-
lem and the efficiency of a CBC driven gradient for decon-
gesting the network. In Sec. IV, we study the spatial distri-
bution of trapping configurations and their contribution to

congestion. We also propose strategies for the elimination of
traps. In each section, we compare the behavior of the gra-
dient mechanism with that of other assortative mechanisms.
We conclude in the final section.

II. GRADIENT MECHANISM OF MESSAGE TRANSFER

The substrate model on which message communication
takes place is shown in Fig. 1�a�. This is a regular two-
dimensional lattice with two types of nodes: The regular
nodes, connected to their nearest neighbors �e.g., node X in
Fig. 1�a��, and hubs at randomly selected locations which are
connected to all nodes in their area of influence, a square of
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FIG. 1. �Color online� �a� Two-dimensional lattice of 20�20
nodes. X is an ordinary node with nearest neighbor connections.
Each hub has a square influence region �as shown for the hub Y�. A
typical path from the source S to the target T is shown with labeled
sites. The path S-1-2-3-A-4-5-6-7-B-8-9-10-T passes through the
hubs A and B. �b� Hubs A–E are distributed randomly in the lattice
and each hub is assigned with some message capacity between 1
and 10. In the figure B has maximum capacity 10. The hubs are
connected by the gradient mechanism as shown by one-way arrows.
After the implementation of the gradient mechanism the distance
between A and B is covered in one step. The gradient path is given
by S-1-2-3-g-8-9-10-T. Hubs M –Q are connected by two-way as-
sortative linkages with two connections per hub. A typical path
from S to T after the implementation of the two-way assortative
mechanism between the hubs is shown by S -a-b-c-M-a2-P-d-e-T.
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side a �e.g., node Y in the same figure�. We set free boundary
conditions. If a message is routed from a source S to a target
T on this lattice through the baseline mechanism, it takes the
path S-1-2-3-A-4-5-6-7-B-8-9-10-T as in Fig. 1�a�.

To set up the gradient mechanism, we need to assign a
capacity to each hub, the hub capacity being defined to be
the number of messages the hub can process simultaneously.
Here, each hub is randomly assigned some message capacity
between one and Cmax. A gradient flow is assigned from each
hub to all the hubs with the maximum capacity �Cmax�. Thus
the hubs with lower capacities are connected to the hubs with
highest capacity Cmax by the gradient mechanism. In Fig.
1�b� if hub A has capacity 5 and hub B has capacity 10, then
a flow can occur from A to B as shown by the dotted line g.
Thus the hubs with the highest capacity Cmax are maximally
connected by the gradient mechanism. After the implemen-
tation of the gradient mechanism, the distance between A and
B is covered in one step as shown by the link g and a mes-
sage is routed along the path S-1-2-3-A-g-B-4-5-6-T as
shown in Fig. 1�b�. Note that gradient mechanism is essen-
tially a one way mechanism �as shown by g�. The same
figure, Fig. 1�b�, also shows the assortative mechanism con-
sidered earlier for transport on this network �23�. Here, each
hub is connected assortatively to two other hubs randomly
chosen from the other hubs. In the assortative scheme a mes-
sage is routed along the path S-a-b-c-M-a2-P-d-e-T. The as-
sortative mechanism, unlike the gradient mechanism, can be
one way or two way. We will compare the efficiency of these
two schemes for single message and multiple messages
transport in later sections of this paper.

A. Routing protocol

The following routing protocol is followed by messages
which travel on the lattice above. Consider a message that
starts from the source S and travels toward a target T. Any
node which holds the message at a given time �the current
message holder�, transfers the message to the node nearest to
it, in the direction which minimizes the distance between the
current message holder and the target. If a constituent node is
the current message holder, it sends the message directly to
its own hub. When the hub becomes the current message
holder, the message is sent to the constituent node within the
square region, the choice of the constituent node being made
by minimizing the distance to the target. When a hub in the
lattice becomes the current message holder, the message is
transferred to the hub connected to the current message
holder by the gradient mechanism, if the new hub is in the
direction of the target, otherwise it is transferred to the con-
stituent nodes of the current hub. The constituent node is
chosen such that the distance from target is minimized. If
there is degeneracy, i.e., there exists simultaneously more
than one gradient path, we choose the one nearest to the
target. When a message arrives at its target it is removed
from the network. If a message reaches the boundary of the
network it remains at the boundary.

Two nodes with coordinates �is , js� and �it , jt� separated
by a fixed distance Dst= �is− it�+ �js− jt� are chosen from a
lattice of a given size L2, and assigned to be the source and

target. The average travel time for a message for a fixed
source-target distance is a good measure of the efficiency of
the network. In our simulations, the travel time is calculated
for a source-target separation of Dst=142 on a 100�100
lattice, and averaged over 50 hub realizations and 1000
source-target pairs, with Cmax=10 and a=3. These values of
Cmax and a are retained for all simulations in this paper.

B. Travel time distributions and finite size scaling

The behavior of average travel time as a function of the
number of hubs for a fixed distance Dst between the source-
target pairs is plotted in Fig. 2 for a 100�100 lattice and Dst
of 142. The plot shows data for the original network, as well
for the gradient scheme applied in the network. The stretched
exponential function f�x�=Q exp�−Ax��, where the constants
take the values �=0.50�0.01, A=0.05, and Q=146, gives
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FIG. 2. �Color online� �a� Average travel time as a function of
hub density follows a stretched exponential behavior ��� when the
hubs are not connected. If the hubs are connected by gradient as
well as one-way assortative mechanism, it follows a q-exponential
behavior. Here q=3.51 for the gradient mechanism ��� as well as
the one-way assortative mechanism �+�. �b� Here q=3.51 for the
one-way mechanism �+� and q=3.58 for the two-way assortative
mechanism ���. As observed, when the hubs are connected by the
assortative mechanisms or by the gradient mechanism, the tail of
the travel time as function of hub density follows a power law
behavior with similar power law exponents. In �a� �inset� for both
the gradient mechanism and the one-way assortative mechanism
�=0.36. In �b� �inset� �=0.34 for the two-way assortative
mechanism.
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an excellent fit to the data on the original network. However,
the gradient data are fitted best by the function f�x�
=A�1− �1−q�x /x0�1/�1−q� with the parameters q=3.51, A
=142, and 1 /x0=0.03. Thus the average travel time as a
function of the number of hubs shows q-exponential behav-
ior �39�.

We plot the data for average travel times for one-way
assortative connections in Fig. 2. The data can be fitted very
well by a q-exponential function with the parameters q
=3.51. When the number of hubs exceeds 10, the tail of the
distribution can be fitted very well by a power law a�x�
= Pax−�, where �=0.34�0.002 and Pa=230 �see inset of
Fig. 2�a��, in agreement with the earlier results. The same
inset shows the tail of the travel time distribution for the
gradient case. It is clear that this also fits a power-law g�x�
= Pgx−�, where �=0.36�0.006 and Pg=310. Thus travel
times for both the gradient and the one-way assortative con-
nections show q-exponential behavior with tails which can
be approximated by power laws. The values of the q expo-
nents as well as the values of the exponent � of the gradient
and the one-way case agree very well. We plot the data for
average travel times as a function of number of hubs for both
one-way and two-way assortative connections in Fig. 2�b�. It
is clear that both one-way and two-way connections show
q-exponential behavior with power law tails, but the expo-
nents differ slightly as can be seen from the values in the
captions. Thus the results for the random assortative connec-
tions are in agreement with earlier observations when power-
law behavior was seen for high hub densities �23�. Earlier
studies of networks with growing rules which incorporate
memory effects have shown q-exponential behavior in the
degree distributions �40,41�. It is interesting to note that both
the gradient network and the assortative connections show a
q-exponential distribution in the travel times. The origin of
this behavior may lie in the long range connections between
the hubs which effectively reduces the distances in the sys-
tem compared to its linear size. We also note that the
q-exponential does not fit the baseline data for this quantity.

The dependence of the average travel times as a function
of hub density discussed above was studied for a 100�100
lattice with a Dst value of 142. However, our results are
independent of lattice size. We consider this dependence for
lattices of side L=300, 500, and 1000 and corresponding Dst
values of 424, 712, and 1420, respectively. We consider both
the gradient case and the case where the connections are
assortative.

Finite size scaling is observed if we plot �Tavg /L�� against
�N /L2�� for different lattice size L �Fig. 3�. Figure 3�a� plots
this behavior for the gradient mechanism. It is seen that the
data observed for different lattice sides L collapse onto each
other for the choice �=1 and �=1.03. The corresponding
data for the assortative mechanism is shown in Fig. 3�b�.
Here the data collapse is observed for �=0.88 and �=1.05
for the two-way assortative mechanism and �=1 and �=1
for the one-way assortative mechanism. Thus the scaling law
is

Tavg = L�f� N

L2��/�
. �1�

It is seen that the data for the gradient mechanism scales as a
good power law up to the scale �N /L2��=0.001. The power
law fit for the assortative mechanism is not as good as that
for the gradient mechanism but scales over a longer stretch
with the cutoff Fig. 3�b� at �N /L2��=0.005.

The distribution of travel times for messages traveling in
the lattice also shows finite size scaling. We considered lat-
tices with sides L=100, 300, 500, and 1000, respectively.
The hub density is taken to be 0.5% for all the above cases.

The distribution of travel times turns out to have the scal-
ing form

P�t� =
1

tmax
G� t

tmax
� , �2�

where tmax is the value of t at which P�t� is maximum. In a
similar context, it was observed that distribution of optimal
path lengths in random graphs with random weights associ-
ated with each link has a universal form �42�, but no analytic
expression for the universal form was specified. The data
obtained for the gradient �Fig. 4�a�� can be fitted very well
by a log-normal distribution �25� of the form

G�x� =
1

x	�2

exp�−

�ln x − ��2

2	2 � , �3�

with �=−1.44 and 	=1.47. The data obtained for the assor-
tative mechanisms shows longer tails than the gradient data
and therefore turns out to conform to a log-normal function
with a power law correction of the form
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FIG. 3. �Color online� Data for L�L two-dimensional lattices for different values of L are seen to collapse on top of each other. It is seen
that the final curve fits a power law of the form Ax−�. �a� A=0.17 and �=0.21�0.002 for the gradient mechanism. �b� A=0.16 and �
=0.18�0.02 for the two-way assortative mechanism. �c� A=0.13 and �=0.22�0.002 for the one-way assortative mechanism.
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G�x� =
1

x	�2

exp�−

�ln x − ��2

2	2 ��1 + Bx−�� , �4�

where �=−0.08, 	=1.04, and �=4.51�0.20 for the two-
way assortative mechanism �Fig. 4�b�� and �=−0.33, 	
=1.08, and �=4.25�0.12 for the one-way assortative
mechanism �Fig. 4�c��. Similar log-normal behavior is ob-
tained for latencies in the internet �16� and in the directed
traffic flow �25�. Similar finite size scaling is observed from
hub densities above 0.1%. Below this value, we see a bimo-
dal distribution in the travel times due to the contribution of
the nodes and the hubs �23�, and no finite size scaling is
observed.

III. CONGESTION AND DECONGESTION

In the previous section, we studied average travel times,
and travel time distributions, for single messages traveling
on the network. In this section, we consider a large number
of messages which are created at the same time and travel
toward their destinations simultaneously. The hubs on the
lattice, and the manner in which they are connected, are the
crucial elements which control the subsequent relaxation dy-
namics, and hence influence the “susceptibility” of the net-
work. On the one hand, it is clear that the hubs provide short
paths through the lattice. On the other hand, when many
messages travel simultaneously on the network, the finite
capacity of the hubs can lead to the trapping of messages in
their neighborhoods, and a consequent congestion or jam-
ming of the network. A crucial quantity which identifies
these hubs is called the coefficient of betweenness centrality
�CBC� �34�, defined to be the ratio of the number of mes-
sages Nk which pass through a given hub k to the total num-
ber of messages N which run simultaneously, i.e., CBC
=Nk /N. Hubs with higher CBCs are more prone to conges-
tion. We compare the efficiency of the gradient mechanism
with one-way and two-way assortative CBC mechanisms.
We study our network in the congested phase where mes-
sages are trapped at such hubs, examine the spatial configu-
rations of the traps, and the success of decongestion strate-
gies.

The gradient mechanism studied here is set up as follows.
We choose � top ranking hubs ranked according to their
CBC values. In the CBC driven gradient mechanism we en-

hance the hub capacities of the � hubs, proportional to their
CBC values by a factor of �. The fractional values are set to
the nearest integer values. The hubs are connected by the
gradient mechanism.

We choose N source-target pairs randomly, separated by a
fixed distance Dst on the lattice. All sources send messages
simultaneously to their respective targets at an initial time t
=0. The messages are transmitted by a routing mechanism
similar to that for single messages, except when the next
node or hub on the route is occupied. We carry out parallel
updates of nodes.

If the would be recipient node is occupied, then the mes-
sage waits for a unit time step at the current message holder.
If the desired node is still occupied after the waiting time is
over, the current node selects any unoccupied node from its
remaining neighbors and hands over the message. If all the
neighboring nodes are occupied, the message waits at the
current node until one of them is free. If the current message
holder is the constituent node of a hub �the temporary target
�34�� which is occupied, the message waits at the constituent
node until the hub is free. The rest of the routing is as de-
scribed in Sec. II for single messages.

In our simulation we choose �=5 and �=10. We choose a
network of �100�100� nodes with N=2000 messages and
Dst=142. It is to be noted that just five hubs on the lattice
have extra connections in this case, unlike the previous sec-
tion where every hub has two extra connections. The fraction
of messages delivered at the end of the run for given hub
density is shown in Table I. It is clear that the gradient
mechanism shows a substantial improvement over the base-
line.

Other decongestion mechanisms which involve hubs of
high CBC have been proposed earlier. It had been observed
that introducing assortative connections between hubs of
high CBC has the effect of relieving congestion �34�. This is
achieved in two ways: �i� One-way �CBCa� and two-way
connections �CBCc� between the top five hubs ranked by
CBC; �ii� one-way �CBCb� and two-way assortative connec-
tions �CBCd� between each of the top five hubs and any other
hub randomly chosen in the lattice. In our simulations, the
capacity of the top five hubs is enhanced to five, so that these
schemes are variants of the CBC scheme. We note that more
than one connection per hub is possible for each one of the
two cases.
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FIG. 4. �Color online� Scaled travel time distribution for �a� the gradient mechanism, �b� the two-way assortative mechanism, and �c� the
one-way assortative mechanism. Different symbols represent lattices of different sizes. �a� The data are fitted by a log-normal distribution
�Eq. �3��, where �=−1.44 and 	=1.47. The data for �b� and �c� are fitted by a log-normal function with a power law correction �Eq. �4��:
�b� �=−0.08, 	=1.04, and �=4.51�0.20; �c� �=−0.33, 	=1.08, and �=4.25�0.12.
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It is clear that the gradient, which is an inherently one-
way mechanism, works better than one-way assortative con-
nections of both kinds, viz. connections between the top five
hubs themselves and the top five hubs and randomly chosen
other hubs. However, it is clear from Table I that the two-
way connections perform better than the gradient at some
hub densities. Thus the gradient is the mechanism of choice
in any setup where one-way connections are optimal.

The same conclusions can be drawn from Fig. 5, which
shows the plot N�t�, the number of messages running in the
lattice at time t, as a function of t for each of these cases,
again with the parameters �=5 and �=10, on a network of
�100�100� nodes with N=2000 messages, Dst=142 and a
run time of 5000 time steps. Figure 5�a� is plotted for a hub
density of 0.5%, and Fig. 5�b� is plotted for a hub density of
4.0%. It is clear that all messages get cleared at the higher
hub density, whereas some messages remain undelivered
even after 5000 time steps at the lower hub density. The
number of messages remains constant, indicating that a small
fraction of messages have been trapped. It is also interesting
to note that the gradient mechanism is less prone to traps. As
a result, there is a time at which the gradient mechanism
overtakes the two-way assortative mechanisms in the deliv-
ery of messages. The spatial configuration of traps is inter-
esting. We study this in the next section.

IV. TRAPPING CONFIGURATIONS

A detailed analysis of the transport mechanism reveals
that the main cause of nondelivery of messages is the phe-
nomenon of the formation of traps or congestion nuclei
�10,43�. In the decongestion mechanisms discussed above,
we studied the transport of 2000 messages. The critical value
of the number of messages for which trapping occurs under
various decongestion strategies is well below 2000. For high
hub densities �400 hubs in 100�100 lattice�, all the mes-
sages get cleared when we introduce different schemes of
decongestion. Now we consider 50 hubs in a 100�100 lat-
tice and a run time of 5000. Figure 5�a� shows that despite
different decongestion mechanisms, the value of N�t� satu-
rates after a certain saturation time ts indicating the forma-
tion of transport traps in the 2D network. These traps are
formed due to various reasons like the low capacity of high

CBC hubs, the opposing movement of messages from
sources and targets situated on different sides of the lattice,
as well as due to edge effects. As mentioned earlier, our
network incorporates local clustering and geographical sepa-
rations. These features have special bearing on spatial con-
figurations of traps. In this section, we look at the spatial
configuration of traps under the various assortative mecha-
nisms.

TABLE I. The table shows F the fraction of messages delivered during a run time of 4Dst, as a function
of hub density D. The second column shows F for the baseline �lattice with unit hub capacity�. The third
column shows F for the CBC �lattice with augmented top five hubs�. The remaining columns show the
fraction of messages delivered for the gradient mechanism and assortative linkages as described in the text.
The numbers in parentheses indicate the standard deviation for fraction of messages. The averaging is done
over 200 hub configurations.

D Fbase FCBC Fgrad FCBCa
FCBCb

FCBCc
FCBCd

0.5 0.156�0.04� 0.2095�0.05� 0.4695�0.08� 0.453�0.07� 0.458�0.08� 0.637�0.08� 0.647�0.08�
1.0 0.286�0.05� 0.405�0.05� 0.6185�0.07� 0.588�0.08� 0.567�0.07� 0.7195�0.07� 0.8285�0.07�
2.0 0.3755�0.06� 0.553�0.07� 0.756�0.08� 0.717�0.08� 0.749�0.04� 0.858�0.04� 0.9205�0.06�
3.0 0.723�0.08� 0.752�0.08� 0.9685�0.03� 0.938�0.04� 0.9395�0.04� 0.9425�0.03� 0.9685�0.03�
4.0 0.903�0.07� 0.868�0.07� 1.0 1.0 1.0 1.0 1.0
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FIG. 5. �Color online� Decongestion by different mechanisms
for �a� 50 hubs and �b� 400 hubs in a 100�100 lattice with Dst

=142. In �a� run time is set at 5000 time steps. It is observed that
after a saturation time ts, the number of messages undelivered, N�t�,
gets saturated, indicating the formation of transport traps in the
lattice. In �b� all the messages get delivered for the assortative and
gradient scheme. The run time is set at 4Dst.
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A. Transport traps for CBC assortative schemes

We study the spatial configuration of traps formed due to
various CBC assortative schemes. In the baseline mechanism
due to unit hub capacity all the top five hubs are trapped
�Fig. 6�a�� and more than 25% of the messages are trapped
overall �Table II�. If the capacities of the top five hubs are
augmented to five �Fig. 6�b�, CBC in Table II�, these hubs
get decongested, but the traps shift to other hubs, and the

number of trapped messages is still large. One-way connec-
tions between these augmented top five hubs �CBCa, Fig.
6�c�� clear the messages faster and shift the trapped hubs to
different locations, but the number of trapped messages is
not reduced. One-way connections between the augmented
top five hubs and randomly chosen other hubs �CBCb, Fig.
6�e�� shift the trapped hubs and also reduce the number of
trapped messages quite significantly. Two-way connections

(a)

0

20

40

60

80

100

0 20 40 60 80 100

Trapping regions
Top five hubs
Trapped hubs

(d)

0

20

40

60

80

100

0 20 40 60 80 100

Top five hubs
Trapping regions

Trapped hubs

Randomly chosen hubs

(b)

0

20

40

60

80

100

0 20 40 60 80 100

Trapping regions

Trapped hubs
Top five hubs

(e)

0

20

40

60

80

100

0 20 40 60 80 100

Trapped hubs

Trapping regions
Top five hubs

(c)

0

20

40

60

80

100

0 20 40 60 80 100

Trapped regions
top five hubs
Trapped hubs

(f)

0

20

40

60

80

100

0 20 40 60 80 100

Trapped hubs
Top five hubs
top five hubs

Randomly chosen hub

FIG. 6. �Color online� This figure shows the spatial configuration of traps. The shaded regions �+� are the trapping regions where the
trapped hubs are indicated by ���.The crosses ��� are the top five hubs. The connection between hubs are indicated by one-way and two-way
dashed arrows. The figure shows trapping regions in �a� the baseline mechanism and �b� the CBC mechanism. The top five hubs ��� have
enhanced capacity of value 5. �c� The CBCa mechanism. The top five hubs ��� with enhanced capacity and connected by one-way
assortative mechanism. �d� The CBCb mechanism. Each of the top five hubs ��� with enhanced capacity has a one-way connection with any
other hub chosen randomly ��� in the lattice. �e� The CBCc mechanism. The top five hubs ��� with enhanced capacity are connected by
two-way assortative mechanism. �f� The CBCd mechanism. Each of the top five hubs ��� with enhanced capacity has a two-way connection
with any other hub chosen randomly ��� in the lattice.
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among the top five hubs themselves �CBCc, Fig. 6�d�� per-
form at par with the CBCb mechanism. Two-way connec-
tions among the top five hubs and randomly chosen other
hubs �CBCd, Fig. 6�f�� work the most efficiently, as can be
seen from the data on the number of trapped hubs and the
total number of trapped messages in Table II.

It is to be noted that no method of reconnecting the hubs
eliminates all traps from the lattice. The geographical loca-
tion of the traps indicates that some of the trapping is due to
edge effects.

B. Transport traps in gradient schemes

We now examine the trapping configurations in different
gradient schemes. We have discussed the single star gradient
mechanism in Fig. 1�b�, where the star was formed by ap-
plying the gradient to the top five hubs ranked by CBC. It is
clear that the topology of the single star gradient configura-
tion is different from that of the assortative connections be-
tween the top five hubs �Fig. 1�b��. Moreover, the capacities
of the top five hubs are different when connected by the
gradient scheme, unlike in the CBC assortative schemes,
where the capacities of all the top five hubs are enhanced
equally. It was observed earlier that the star configuration
provides optimum transport in a network �29,44�. We also
found that, for a long run time �5000 steps�, this mechanism
clears a larger number of messages than other decongestion
mechanisms discussed above �Fig. 5�a��. However, a few
messages still remain trapped in this scheme �Fig. 5�a�, Table
III�. We try the double star gradient to achieve detrapping
here. In the double star gradient mechanism we form the first
star by applying the gradient mechanism to the top five hubs
ranked by CBC, and the second star by applying the gradient
to the next top five hubs. We also connect the double star by

applying one-way and two-way connections between the
central hubs as shown in Fig. 7.

Figure 9 shows the trapping regions in the double star
configuration. The double star configuration �Fig. 9�b��
clears messages faster than the single star configuration �Fig.
9�a�� due to the presence of additional short cuts. If the ca-
pacity of the central hub of the double star is doubled, some

TABLE II. The table shows the number of hubs trapped and
total number of messages trapped in the lattice when different
schemes for message transfer are applied. The number of messages
trapped in a hub is �2a+1�2. Hence the total number of messages
trapped in the hubs is k1�2a+1�2, where k1 is the number of trapped
hubs. A few messages, say n1, get trapped in the ordinary nodes
adjacent to the constituent nodes of a hub. The total number of
messages trapped in the lattice after a given run time is given by
k1�2a+1�2+n1. We chose 50 hubs in 100�100 lattice and a run
time of 5000. For the CBC cases only the top five hubs have ca-
pacity enhanced to 5. The numbers in parentheses indicate the stan-
dard deviation for messages. The averaging is done over 200 hub
configurations.

Mechanism
No. of

trapped hubs
Messages
trapped

Hub
capacity

Saturation
time

Baseline 10 515�76� 1 2500

CBC 8 410�109� 5 2000

CBCa 8 413�93� 5 1500

CBCb 6 328�102� 5 1250

CBCc 6 321�69� 5 1000

CBCd 5 268�50� 5 1000

TABLE III. The table shows the number of hubs trapped and
total number of messages trapped in the lattice when different CBC
driven gradient schemes for message transfer are applied. We chose
50 hubs in 100�100 lattice and a run time of 5000. The position of
the central hub for single star configuration is �50,44� and that for
double star configuration is �50,44� and �29,14�. �DS�* indicates
double star with augmented central hubs. The numbers in parenthe-
ses indicate the standard deviation for messages. The averaging is
done over 200 hub configurations.

Gradient
mechanism

No. of
trapped hubs

Messages
trapped

Saturation
time

Capacity of
central hubs

Single star 4 213�75� 1200 10

Double star �DS� 3 157�39� 1400 10,4

�DS� one way 6 308�120� 1800 10,4

�DS� two way 4 205�73� 1250 10,4

�DS�� 1 54�16� 1200 20,8

�DS�� one way 0 0 - 20,8

�DS�� two way 0 0 - 20,8

C

D

E

F

B

P

Q R

S

I

II

A

FIG. 7. �Color online� Double star configuration. The hubs
B , C , D , E , F are the top five hubs and A , P , Q , R , S are
the next in order of CBC. The hubs A and F are the central hubs for
their respective star configurations. The dotted line I is a one-way
connection between A and F. The dotted line II represents a two-
way connection between A and F.
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messages still remain undelivered. �See Table III as well as
Fig. 8.� If one-way assortative connections �Fig. 9�c�� are
added between the central hub of each star, the situation does
not improve and messages get trapped in the vicinity of the
central hubs. The introduction of two-way connections �Fig.
9�d�� improves the situation, but still does not clear the con-
gestion completely. In order to clear the congestion com-
pletely, we need to enhance the capacity of the central hubs
of the two stars �Table III� as well as add an assortative
connection between the two central hubs. If the capacity of
these two central hubs is doubled relative to their original
capacity, all the messages get cleared for both the assortative
one-way and two-way cases �Fig. 8�b��. Thus the capacity of
the central hubs of the stars remains the limiting factor in the
clearing of congestion. However, due to the optimal nature of
the double star with two connections configuration, an in-
crease of capacity at just the two central hubs of the star is
sufficient to relieve congestion. We observed that messages
do not hop between any of the connected central hubs as in
�10�.

As seen in Tables II and III, the standard deviation for
messages trapped is quite large. This is due to the large fluc-
tuations during trapping of messages as compared to the free

flow states �Table I� where messages get cleared during a run
time of 4Dst.

C. Elimination of trapping effects

As seen above, the occurrence of transport traps is un-
avoidable in networks which incorporate hubs. On the other
hand, the existence of hubs is essential for providing short
paths and short travel times on the network. In the case of the
gradient mechanism, the elimination of trapping effects in
the double star configuration needed a combination of addi-
tion of connectivity, as well as capacity enhancement. This is
a static strategy. Static and dynamic strategies of message
routing have been considered earlier for communication net-
works �45�. In this section we outline two dynamic strategies
of eliminating trapping effects. One involves capacity en-
hancement and the other involves rerouting. The new strate-
gies are invoked after the number of messages which reach
the target has saturated, that is at times which exceed ts.

In strategy I, we enhance the capacity of the temporary
targets of the trapped messages by unity. The number of
messages running on the lattice at time t as a function of time
can be found in Table IV. Each column is labeled by the
nature of the substrate network on which the messages run.
The traps clear very fast �within 200 time steps� as can be
seen from the table, despite the enhancement of capacity
being small. The baseline clears the slowest and the gradient
the fastest.

In strategy II, we bypass the transport traps by sending the
messages which will encounter traps by a different route. If
the temporary target of a given message turns out to be a
transport trap, the message is assigned a different temporary
target. The newly assigned temporary target is chosen along
the direction of the final target �Table V�. This strategy is not
efficient for the baseline mechanism. For this case, messages
start clearing only to be trapped again after a certain time.
However, this strategy acts very fast when applied to the
assortative network and the gradient network. It is also ob-
served �Tables IV and V� that the fluctuations in both these
two strategies are quite large during the transition from the
congested �trapped� phase to the decongested phase.

It is observed that, in terms of rate of delivery of mes-
sages, strategy I is more efficient than strategy II when ap-
plied on the baseline, the CBC, the one-way assortative
mechanisms, and the gradient mechanism. Strategy II per-
forms better than strategy I when applied on the two-way
assortative mechanisms, since the number of alternate paths
is larger.

V. CONCLUSION

To summarize, in this paper we have studied network traf-
fic dynamics for single message and multiple message trans-
port in a communication network of nodes and hubs which
incorporates geographic clustering. The gradient is imple-
mented by assigning each hub on the network some ran-
domly chosen capacity and connecting hubs with lower ca-
pacities to the hubs with maximum capacity.

The average travel time of single messages traveling on
this lattice, plotted as a function of hub density, shows
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FIG. 8. �Color online� �a� Trapping in different types of gradient
schemes for 50 hubs in a 100�100 lattice. The run time is set at
5000. �b� Messages clear faster when the capacity of the central
hubs of double star configuration are augmented. Total deconges-
tion occurs when we introduce one-way and two-way connections
between the two central hubs of the double star and double their
capacities to that of their original values. We considered 50 hubs in
100�100 lattice.
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stretched exponential behavior for the base network in the
absence of the gradient, but shows q-exponential behavior
when the hubs are connected by the gradient mechanism.
This q exponential originates in the fact that our travel times
are highly correlated due to many paths traveling through
common hubs. The gradient between the hubs introduces
short travel times on the lattice and long range correlations
between the hubs. Hence the distribution of travel times for
the gradient case at high hub densities shows log-normal
behavior as in the case of the distribution of latencies for the

internet �16� and for directed traffic flow �25�. The power
law in the average travel times seen at high hub densities can
be extracted from the log-normal travel time distribution at
these densities �46�. However, the extraction of a q exponen-
tial from a suitable Tsallis entropy is not simple for this
network. We hope to discuss this issue in future work.

Congestion effects are observed when many messages run
simultaneously on the base network. However, the network
decongests very rapidly when the gradient mechanism is ap-
plied to a few hubs of high coefficient of betweenness cen-
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FIG. 9. �Color online� Trapping regions for 50 hubs in a 100�100 lattice in �a� the single star gradient mechanism. The capacities of the
top five hubs ��� are distributed proportional to their CBC values with a multiplicative factor of 10. The messages are trapped in the hubs
marked by an ���. �b� The double star gradient mechanism. The capacities of the top five hubs ��� and the next top five hubs ��� are
distributed proportional to their CBC values with a multiplicative factor of 10. The patches �+� indicate the trapped hubs ���. The number
of patches are less than that for the single star configuration. �c� The one-way connection between the two central hubs �� and �� of the
double star configuration. The shaded regions �+� are the trapping regions in the lattice, where the trapped hubs are indicated by ���. �d� The
two-way connection between the two central hubs �� and �� of double star configuration. Hubs 1 and 2 are cleared when a two-way
connection between the central hubs is introduced.

TABLE IV. The table shows the comparison of values of N�t� at time t, for various decongestion schemes
when strategy I is applied. The numbers in parentheses indicate the standard deviation for messages. The
averaging is done over 200 hub configurations.

t Nbase NCBC NCBCa
NCBCb

NCBCc
NCBCd

Ngrad

4800 515�76� 410�113� 413�93� 328�102� 321�99� 268�89� 213�75�
4850 474�71� 329�75� 274�68� 226�70� 182�56� 151�40� 155�46�
4900 184�65� 59�20� 57�25� 71�26� 42�13� 20�4� 27�14�
4950 20�16� 1�0� 3�0� 2�0� 3�0� 2�0� 0

5000 1�0� 0 0 0 0 0 0
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trality. The existence of transport traps can set a limit on the
extent to which congestion is cleared at low hub density. The
spatial configuration of traps is studied for both the gradient
and other assortative decongestion schemes. We observe that
the gradient mechanism which results in the formation of star
configurations is substantially less prone to the formation of
transport traps than other decongestion mechanisms. We also
propose efficient strategies which eliminate the trapping ef-
fects either by rerouting or by minimal addition of capacity
or connections at very few locations. We note that networks
which incorporate geographic clustering and encounter con-
gestion problems arise in many practical situations, e.g., cel-

lular networks �47� and air traffic networks �48�. Networks
where functional clusters are connected by long range con-
nections arise in complex brain networks �49� and neural
networks �50� as well. Our results may have relevance in
these contexts.
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